686	Hydrogen	and Its	compounds
-----	----------	---------	-----------

 7. Among the following, identify the compound which cannot act as both oxidising and reducing agents [AMU 2002] (a) H₂O₂ (b) H₂ (c) SO₂ (d) Cl₂ 8. Which of the following reaction produces hydrogen (a) Mg (b) Al (c) Cu (d) Ca 21. The metal which displaces hydrogen 	l PMT 1999]
agents[AMU 2002](c) Occlusion(d) Adsorption(a) H_2O_2 (b) H_2 20.Which of the following produces hydrogen(c) SO_2 (d) Cl_2 Which of the following reaction produces hydrogen(a) Mg (b) Al (c) Cu(d) Ca(c) Cu(d) Ca	tion
(a) H_2O_2 (b) H_2 20.Which of the following produces hydrogen(c) SO_2 (d) Cl_2 (d) Mg (b) Al 8. Which of the following reaction produces hydrogen(c) Cu (d) Ca AIIMS 2002121. The metal which displaces hydrogen	
(c) SO_2 (d) Cl_2 dihydrogen 3. Which of the following reaction produces hydrogen (a) Mg (b) Al (c) Cu (d) Ca [AIIMS 2002] 21. The metal which displaces hydrogen	
(a) Mg (b) Al (c) Cu (d) Ca (a) Mg (b) Al (c) Cu (d) Ca (a) Mg (b) Al (c) Cu (d) Ca	
hydrogen (c) Cu (d) Ca (FAIIMS 2002] 21. The metal which displaces hydroge	
[AIIMS 2002] 21. The metal which displaces hydroge	
	en from a
(a) $Mg + H_2O$ (b) $BaO_2 + HCl$ boiling caustic soda solution is	
(a) AS (b) Zn	
(c) $H_2S_4O_8 + H_2O$ (d) $Na_2O_2 + 2HCl$ (c) Mg (d) Fe	
 Hydrogen resembles in many of its properties [MH CET 2001] (a) Hologen (b) Alkali metals 22. Metals like platinum and palladium (large volumes of hydrogen under conditions. Such adsorbed hydrogen by a second second	er special
(a) halogen (b) Alkan metals is known as	the metal
(c) Both (a) and (b) (d) None of these (a) Adsorbed hydrogen (b) Occluded h	vdrogen
D. Ortho and para hydrogen differ in [AFMC 2001] (c) Reactive hydrogen (d) Atomic hy	
(a) Proton spin (b) Electron spin 23. Which is poorest reducing agent	0
(c) Nuclear charge (d) Nuclear reaction (a) Nascent hydrogen	
Action of water or dilute mineral acids on metals (b) Atomic hydrogen	
can give (c) Dihydrogen	
[Kerala (Med.) 2002] (d) All have same reducing strength	
(a) Monohydrogen (b) Tritium 24. The sum of protons, electrons and neut	rons in the
(c) Dihydrogen (d) Trihydrogen heaviest isotope of hydrogen is	
b. Hydrogen from HCl can be prepared by [Pb. CET 1997] (a) 6 (b) 5 (c) 4 (d) 2	
(a) Mg (b) Cu (c) 4 (d) 3	
(c) P (d) Pt . 25. Number of nucleons in D_2 molecule is	
3. Which of the following can adsorb largest volume(a) 1(b) 2of hydrogen gas(c) 3(d) 4	
(a) Finely divided platinum (b)Finely divided nickel 26. An ionic compound is dissolved simulta	-
(c) Colloidal palladium (d) Colloidal platinum heavy water and simple water. Its solut	-
The nuclei of trituum (H ²) atom would contain	in heavy w
neutrons (c) Solubility is same in both 27. Ortho-hydrogen and para-hydrogen re	(d)
(a) 1 (b) 2 27. Ortho-hydrogen and para-hydrogen re which of the following property	semples in
(c) 3 (d) 4 (a) Thermal conductivity(b) Magnetic p	properties
5. The colour of hydrogen is [MP PET 2004] (c) Chemical properties (d) Heat capacity	-
(a) Black (b) Yellow 28. The difference between heat of ads	
(c) Orange (d) Colourless ortho and para hydrogen is	
5. Ordinary hydrogen at room temperature is a (a) $0.4 \ kJ \ mol^{-1}$ (b) $0.8 \ kJ \ mol^{-1}$	
mixture of (c) Zero (d) None of th	ese
(a) 75% of <i>o</i> -Hydrogen + 25% of <i>p</i> -Hydrogen 29. Hydrogen ion H^- is isoelectronic with	
(a) 75% of o-Hydrogen + 25% of p-Hydrogen 29. Hydrogen ion H^- is isoelectronic with (a) Li (b) 25% of o-Hydrogen + 75% of p-Hydrogen(a) Li (b) He	
(a) 75% of o-Hydrogen + 25% of p-Hydrogen29. Hydrogen ion H^- is isoelectronic with(b) 25% of o-Hydrogen + 75% of p-Hydrogen(a) Li (b) He (c) 50% of o-Hydrogen + 50% of p-Hydrogen(c) H^+ (d) Li^-	at FAFMC 200
(a) 75% of o-Hydrogen + 25% of p-Hydrogen29. Hydrogen ion H^- is isoelectronic with (a) Li (b) 25% of o-Hydrogen + 75% of p-Hydrogen(a) Li (b) He (c) 50% of o-Hydrogen + 50% of p-Hydrogen(c) H^+ (d) Li^- (d) 1% of o-Hydrogen + 99% of p-Hydrogen30. Hydrogen can be fused to form helium at	
 (a) 75% of o-Hydrogen + 25% of p-Hydrogen (b) 25% of o-Hydrogen + 75% of p-Hydrogen (c) 50% of o-Hydrogen + 50% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen Hydrogen cannot reduce 29. Hydrogen ion H ⁻ is isoelectronic with (a) Li (b) He (c) H⁺ (d) Li⁻ 30. Hydrogen can be fused to form helium at (a) High temperature and high pressure	e
(a) 75% of o-Hydrogen + 25% of p-Hydrogen (b) 25% of o-Hydrogen + 75% of p-Hydrogen (c) 50% of o-Hydrogen + 50% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen29. Hydrogen ion H^- is isoelectronic with (a) Li (b) He (c) H^+ (d) Li^- 7. Hydrogen cannot reduce (a) Hot CuO (b) Fe_2O_3 30. Hydrogen ion be fused to form helium at (a) High temperature and high pressure (b) High temperature and low pressure	2
(a) 75% of o-Hydrogen + 25% of p-Hydrogen (b) 25% of o-Hydrogen + 75% of p-Hydrogen (c) 50% of o-Hydrogen + 50% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen29. Hydrogen ion H^- is isoelectronic with (a) Li (b) He (c) H^+ (c) H^+ (d) Li^- 7. Hydrogen cannot reduce (a) Hot CuO (b) Fe_2O_3 (c) Hot SnO_2 (d) Hot Al_2O_3 29. Hydrogen ion H^- is isoelectronic with (a) Li (b) He (c) H^+ (d) Li^- 30. Hydrogen can be fused to form helium a (a) High temperature and high pressure (b) High temperature and high pressure (c) Low temperature and high pressure	2
(a) 75% of o-Hydrogen + 25% of p-Hydrogen (b) 25% of o-Hydrogen + 75% of p-Hydrogen (c) 50% of o-Hydrogen + 50% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen29. Hydrogen ion H^- is isoelectronic with (a) Li (b) He (c) H^+ (d) Li^- 7. Hydrogen cannot reduce (a) Hot CuO (b) Fe_2O_3 (c) Hot SnO_2 (d) Hot Al_2O_3 30. Hydrogen can be fused to form helium a (a) High temperature and high pressure (b) High temperature and high pressure (c) Low temperature and high pressure (d) Low temperature and high pressure	2
 (a) 75% of o-Hydrogen + 25% of p-Hydrogen (b) 25% of o-Hydrogen + 75% of p-Hydrogen (c) 50% of o-Hydrogen + 50% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (e) 1% of o-Hydrogen + 99% of p-Hydrogen (f) 1% of o-Hydrogen + 99% of p-Hydrogen (g) 1% of o-Hydrogen + 99% of p-Hydrogen (h) 1% of o-Hydrogen + 99% of p-Hy	e steam, and
 (a) 75% of o-Hydrogen + 25% of p-Hydrogen (b) 25% of o-Hydrogen + 75% of p-Hydrogen (c) 50% of o-Hydrogen + 50% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (e) Hot CuO (f) Fe₂O₃ (f) Hot SnO₂ (g) Hot Al₂O₃ (hydrogen does not combine with (a) Antimony (b) Sodium (c) Ferror (b) Sodium (c) Ferror (c) Hot SnO₂ (c) Hot Al₂O₃ (c) Hot SnO₂ (c) Hot SnO₂ (c) Hot Al₂O₃ (c) Hot SnO₂ (c) Hot Al₂O₃ (c) Hot SnO₂ (c) Hot SnO₂<td>e steam, and</td>	e steam, and
 (a) 75% of o-Hydrogen + 25% of p-Hydrogen (b) 25% of o-Hydrogen + 75% of p-Hydrogen (c) 50% of o-Hydrogen + 50% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (d) 1% of o-Hydrogen + 99% of p-Hydrogen (e) Hot CuO (f) Fe₂O₃ (c) Hot SnO₂ (d) Hot Al₂O₃ (e) Hydrogen does not combine with (a) Antimony (b) Sodium 29. Hydrogen ion H⁻ is isoelectronic with (a) Li (b) He (c) H⁺ (d) Li⁻ 30. Hydrogen can be fused to form helium at (a) High temperature and high pressure (b) High temperature and high pressure (c) Low temperature and high pressure (d) Low temperature and low pressure 31. Hydrogen can be prepared by mixing a water gas at 500°C in the presence of	steam, and Fe_3O_4 and

Get More Learning Materials Here : 💻

Ionization energy of hydrogen is (c) Bosch process (d) Parke's process 41. Which of the following metal do not liberate (a) Equal to that of chlorine 32. hydrogen from dilute hydrochloric acid (b) Lesser than that of chlorine (a) *Zn* (b) Mq (c) Slightly higher than that of chlorine (c) *Fe* (d) Au (d) Much higher than that of chlorine 33. An element reacts with hydrogen to form a 42. Hydrogen acts as a reducing agent and thus compound A which on treatment with water resembles liberates hydrogen gas. The element can be (a) Halogen (b) Noble gas (a) Nitrogen (b) Chlorine (c) Radioactive elements(d) Alkali metals (c) Selenium (d) Calcium Which position for hydrogen explain all its 43. 34. Hydrogen combines with other elements by properties (a) Losing an electron (a) At the top of halogen (b) Gaining an electron (b) At the top of alkali metals (c) Sharing an electron (c) At the top of carbon family (d) Losing, gaining or sharing electron (d) None of these **35.** Which of the following explanation is best for not 44. Hydrogen readily combines with non-metals and placing hydrogen with alkali metals or halogen thus it shows its (a) The ionization energy of hydrogen is high for (a) Electronegativity character group of alkali metals or halogen (b) Electropositive character (b) Hydrogen can form compounds (c) Both (a) and (b) (c) Hydrogen is a much lighter element than the (d) None of these alkali metals or halogens (d) Hydrogen atom does not contain any neutron The oxidation states shown by hydrogen are 45. 36. Which of the following terms is not correct for (a) -1 only (b) Zero only hydrogen (c) +1, -1, 0 (d) +1 only (a) Its molecule is diatomic 46. Hydrogen readily combines with metals and thus (b) It exists both as H^+ and H^- in different shows its chemical compounds (a) Electropositive character(b)Electronegative character (c) It is the only species which has no neutrons in (c) Both (a) and (b) (d) None of these the nucleus Electrolysis of fused sodium hydride liberate 47. (d) Heavy water is unstable because hydrogen is hydrogen at the substituted by its isotope deuterium (a) Anode When electric current is passed through an ionic 37. hydride in the molten state (b) Cathode (c) Cathode and anode both (a) Hydrogen is liberated at the anode (b) Hydrogen is liberated at the cathode (d) None of these (c) No reaction takes place **48.** Protonic acid is (d) Hydride ion migrates towards cathode (a) A compound that form solvated hydrogen ion 38. Which of the halogen has maximum affinity for in polar solvent hydrogen (b) An acid which accepts the proton (a) *F*₂ (b) *Cl*₂ (c) A compound that forms hydride ion in polar (c) Br₂ (d) I_2 solvent (d) An acid which donates the proton Which of the following statements is most 39. applicable to hydrogen **49.** In all its properties, hydrogen resembles (a) It can act as a reducing agent (a) Alkali metals only (b) It can act as an oxidising agent (b) Halogen only (c) It can act both as oxidising and reducing agent (c) Both alkali metals and halogens (d) It can neither act as oxidising nor as a (d) Neither alkali metals nor halogens

CLICK HERE

≫

- Hydrogen molecule differs from chlorine molecule 50. in the following respect
 - (a) Hydrogen molecule is non-polar but chlorine molecule is polar
 - (b) Hydrogen molecule is polar while chlorine molecule is non-polar

🕀 www.studentbro.in

(c) Both electropositive as well as electronegative

(d) Neither electropositive nor electronegative

reducing agent

40. Hydrogen is

(a) Electropositive

(b) Electronegative

	hydrogen	le can form intermolecular bonds but chlorine
		ıle cannot participate in d formation but chlorine
51.	Which of the follow protium, deuterium ar	ing statements concerning ad tritium is not true
	(a) They are isotopes	of each other
	(b) They have similar	electronic configurations
	(c) They exist in the n	ature in the ratio of 1 : 2 : 3
		rs are in the ratio of 1 : 2 : 3
52.	When SO_3 is treat	ed with heavy water the
	product is/are	
	(a) Deuterium and sul	phuric acid
	(b) Deuterium and sul	phurous acid
	(c) Only deuterium	
	(d) Dideuterosulphuri	
53.	Hydrogen has three possible diatomic mole	isotopes, the number of ecules will be
	(a) 2	(b) 6
	(c) 9	(d) 12
54.	In which of the compo oxidation state of –1	unds does hydrogen have an
	(a) CH_4	(b) <i>NH</i> ₃
	(c) HCl	(d) <i>CaH</i> ₂
55.	Pure hydrogen is obta of	ined by carrying electrolysis
	(a) Water containing	H_2SO_4
	(b) Water containing <i>I</i>	NaOH
	(c) $Ba(OH)_2$ solution	
_	(d) KOH solution	
56.	production of hydroge	
	(a) Producer gas	(b) Water gas
	(c) Coal gas	(d) None of these
57.		
	(a) Chemical propertie	
	(b) Physical propertie	
	(c) Both physical and	
-0	(d) Radioactive proper	
58.	Tritium undergoes rac	
	(a) α -particles (c) Neutrons	(b) β -particles
-0		(d) γ -rays
59.	oils in the presence of	-
	(a) Methane	(b) Ethane
6 -	(c) Ozone	(d) Hydrogen
60.	The conversion of ato hydrogen is	mic hydrogen into ordinary
	(a) Exothermic change	a
	a bround mill challes	

- (a) Exothermic change
- (b) Endothermic change

_			
	(c) Nuclear change		
	(d) Photochemical change		
61.	The name hydrogen wa		
	(a) Cavendish	(b) Lavoisier	
_	(c) Urey	(d) None of these	
62.	The ratio C_p / C_v for H_2	is	
	(a) 1.40	(b) 1.67	
	(c) 1.33	(d) None of these	
63.	Triatomic hydrogen is o	called	
	(a) Deuterium	(b) Hyzone	
	(c) Ortho form	(d) Hydronium ion	
64.	$LiAlH_4$ is obtained by	reacting an excess of	
	With an ethereal solution	on of AlCl ₃	
	(a) <i>LiCl</i>	(b) <i>LiH</i>	
	(c) <i>Li</i>	(d) LiOH	
65.	Alkali metal hydrides re	eact with water to give	
	(a) Acidic solution	(b) Basic solution	
	(c) Neutral solution	(d) Hydride ion	
56.	Ionic hydrides are usua	lly	
	(a) Good electrically co	nductors when solid	
	(b) Easily reduced		
	(c) Good reducing agen	its	
	(d) Liquid at room temp	perature	
67.	When $NaBH_4$ is dissolv	ed in water	
	(a) It decomposes with	the evolution of H_2	
	(b) Na^+ and BH_4^- are for	ormed which are stable	
	(c) BH_4^- ions formed	l initially decompose to	
	produce <i>OH</i> [−] ions decomposition	s, which prevent further	
	(d) NaH and B_2H_6 are p	produced	
68.		O (oxide of hydrogen) is	
	(a) Water	(b) Hydrogen oxide	
	(c) Oxidane	(d) None of these	
69.		with significant covalent	
	character is/are		
	(a) BeH $_2$	(b) <i>MgH</i> ₂	
	(c) Both (a) and (b)	(d) None of these	
70.	Limiting compositions of	of <i>f</i> -block hydrides are	
	(a) MH_2 and MH_3	(b) MH_3 and MH_5	
	(c) MH_2 and MH_8	(d) MH_2 and MH_6	
71.	Hydrogen directly comb	oines with[Roorkee Entrance	
	(a) <i>Au</i>	(b) <i>Cu</i>	
	(c) <i>Ni</i>	(d) <i>Ca</i>	
72.	Chemical <i>A</i> is used for temporary hardness.	water softening to remove A reacts with sodium caustic soda. When CO_2 is	

[Pb. CET 1990; AIIMS 1999]

bubbled through a solution of A, it turns cloudy.

What is the chemical formula of A

Get More Learning Materials Here : 📕

[Pb. PMT 1999]

					Hydrogen and	Its compounds	689
	(a) <i>CaCO</i> ₃	(b) <i>CaO</i>					[Pb. PMT 199
	(c) <i>Ca</i> (<i>OH</i>) ₂	(d) <i>Ca</i> (<i>H</i>	ICO)		(a) <i>Ba</i>	(b) <i>Pb</i>	
	-				(c) <i>Hg</i>	(d) <i>Sn</i>	
73.	When same amount with excess of su			82.	Which of the follow	wing gas is insolu	ble in water
	sodium hydroxide so					00	[Pb. CET 2003
	hydrogen evolved is		[CPMT 1991]		(a) <i>SO</i> ₂	(b) <i>NH</i> ₃	
	(a) 1:1	(b) 1 : 2			(c) <i>H</i> ₂	(d) <i>CO</i> ₂	
	(c) 2:1	(d) 9:4		80	Which element f	_	compound
74.	Which one of the fo the laboratory for a	0	neutral gases	83.	chemistry	orms maximum	[Pb. CET 2004
			[CBSE PMT 1992]		(a) <i>O</i>	(b) <i>H</i>	-
	(a) Phosphorus pent	toxide			(c) <i>Si</i>	(d) <i>C</i>	
	(b) Active charcoal			84.	Hydrogen is not ol		reacts with
	(c) Anhydrous calcin	um chioride		-	, ,		[J & K 200
	(d) Na_3PO_4				(a) Cold water	(b) Hot <i>N</i>	<i>OH</i> solution
75.	Which is the lightes	-	[CPMT 1993]		(c) Conc. sulphuri		
	(a) Nitrogen	(b) Heli			•		
- 6	(c) Oxygen	(d) Hydi	•		Watar ar k	wdride of evve	.
76.	The composition of t				water or r	ydride of oxyg	en
	(a) 1 electron, 1 prot						
	(b) 1 electron, 2 pro			1.	Synthetic deterger		
	(c) 1 electron, 1 prof(d) 1 electron, 1 prof				water than soaps l		[AMU 2002
77.	The property of hy				(a) They are highl	-	
//•	from alkali metals is	-	and anothing another it		(b) Their Ca^{++} and	d Mg^{++} salts are v	water soluble
	(a) Its electropositiv				(c) Their Ca^{++} and	nd Mg^{++} salts as	re insoluble
	(b) Its affinity for n			wate	er		
	(c) Its reducing char	racter			(d) None of these		
	(d) Its non-metallic	character		2.	D_2O is used more	in [BHU 19	997; CPMT 199
78.	The hydride ion H	is a strong	er base than its		(a) Chemical indu	strv	
	hydroxide ion OH	. Which o	f the following		(b) Nuclear reacto	-	
	reactions will occur	r if sodium l	nydride (<i>NaH</i>) is		(c) Pharmaceutica		
	dissolved in water				(d) Insecticide pre		
			[CBSE PMT 1997]	3.	Heavy water (D_2O)	-	
	(a) $H^{-}(aq) + H_2O \rightarrow H_2$	$I_3O^-(aq)$		3.	- 2		
	(b) $H^{-}(aq) + H_2O(l) \rightarrow$	$OH^{-}(aq) + H_{2}(g$)		(a) A product of ox(b) Water of miner		en
	(c) $H^{-}(aq) + H_2O(l) \rightarrow$	No reaction			(c) Water obtaine	d by repeated d	listillation ar
	(d) None of these				condensation	on containing	liccolred col
7 9 .	Hydrogen accepts a configuration. In thi	s it resembles	6 [Pb. PMT 1997]		(d) Ordinary wat vy metals		
	(a) Halogen		li metals	4.	Temporary hardne by adding	ess may be remov	eu nom wate
_	(c) Chalcogens		line earth metals		of www.ing		[Pb. PMT 2002
80.	Which of the followi	-			(a) $CaCO_3$	(b) <i>Ca</i> (<i>OH</i>	
			C 1997; BHU 1997]		(c) $CaSO_4$	(d) <i>HCl</i>	/2
state	(a) It can form bond	ls in +1 as we	ll as -1 oxidation				
tate		acted at catha	de	5۰	Heavy water is		7; UPSEAT 200
	(b) It is always colle						3; Pb. CET 200
	(c) It has a very hig	-			(a) Water containi	ing Fe, Cr, Mn	
01	(d) It has same elect		•		(b) Water at $0^{\circ}C$		
81.	Which of the followi	ing will not a	sprace nyurogen		(c) $D_2 O$		

[Pb. CET 2003] SO_2 (b) *NH*₃ H_2 (d) *CO*₂ ich element forms maximum compound in mistry [Pb. CET 2004] 0 (b) *H* Si (d) C drogen is not obtained when zinc reacts with [J & K 2005] Cold water (b) Hot NaOH solution Conc. sulphuric acid (d) dilute HCl Water or hydride of oxygen

- thetic detergents are more effective in hard ter than soaps because [AMU 2002] They are highly soluble in water
 - Their Ca^{++} and Mg^{++} salts are water soluble

- None of these
- *)* is used more in [BHU 1997; CPMT 1997]
 - Chemical industry
 - Nuclear reactor
 - Pharmaceutical preparations
 - Insecticide preparation
- avy water (*D*₂*O*) is [**RPET/PMT 2000; CPMT 2000**]
 - A product of oxygen and hydrogen
 - Water of mineral springs
 - Water obtained by repeated distillation and condensation

	[Pb. PMT 2002]
(a) <i>CaCO</i> ₃	(b) $Ca(OH)_2$

[AFMC 1997; UPSEAT 2003 MH CET 2003; Pb. CET 2001]

- Water containing Fe, Cr, Mn
- Water at 0°C
- (c) $D_2 O$

CLICK HERE >>>

	690 Hydrogen	and Its compounds			
	(d) Water obtained a	fter a number of distillations		(a) 1 <i>M</i>	(b) 2.5 <i>M</i>
6.	Heavy water is comp	ound of[DPMT 2001; DCE 2002]		(c) 5 <i>M</i>	(d) 55.5 <i>M</i>
	(a) Oxygen and heav	ier isotopes of hydrogen	15.	Which of the follo	owing is not a hard water
	(b) Hydrogen and he	avier isotopes of oxygen		(a) Water contair	ning CaCl ₂
	(c) Heavier isotopes	of oxygen and hydrogen		(b) Water contair	ning dil. <i>HCl</i>
	(d) None of these			(c) Water contair	$M_{gSO_{4}}$
7.		ving pair of ions makes the		(d) None of these	
	water hard		16.		sed in atomic reactor as
	() $()$ $()$ $()$ $()$ $()$ $()$ $()$	[AMU 2002]		(a) Coolant	
	(a) Na^+ , SO_4^{2-}	(b) K^+, HCO_3^-		(b) Moderator	
	(c) Ca^{2+}, NO_3^-	(d) NH_4^+, Cl^-		(c) Both moderat	or and coolant
3.	Temporary hardness	of water can be removed by		(d) Neither coola	nt nor moderator
		[Pb. PMT 2001]	17.	Heavy water free	zes at
	(a) Addition of potas	sium permagenate		(a) 0°C	(b) 3.8°C
	(b) Boiling			(c) 38°C	(d) – 0.38°C
	(c) Filtration		18.	The <i>pH</i> of D_2O as	nd H_2O at 298 K is
	(d) Addition of chlori	ine		(a) 7.0, 7.0	(b) 7.35, 7.0
).	When zeolite (Hy			(c) 7.0, 6.85	(d) 6.85, 7.35
	-	with hard water the sodium	19.	Which of the follo	
	ions are exchanged w	[DPMT 2000]			ter is electrolysed more rapi
	(a) OH^- ions	(b) SO_4^{2-} ions	thar	D_2O	
				(b) Reaction betw	ween H_2 and Cl_2 is much fas
	(c) Ca^{2+} ions	(d) H^+ ions		than D_2 and	Cl_2
10.		ing statements do not define		(c) D_2O freezes a	at lower temperature than H_2
	universal solvent"	operty of water "Water is a		-	ation energy for D_2 is greated
		ve maximum number of	thar		D_2 is great
com	pounds			-	
	(b) It has very low di	ielectric constant	20.		llowing will determine whet ess liquid is water or not
	(c) It has high liquid	range		(a) Melting	
	(d) None of these			(b) Tasting	
11.		itrons in nuclear reactor is		(c) Phosphthaleii	1
	slowed down by			-	h of anhydrous <i>CuSO</i> 4
	(a) Heavy water $(D_2 C_2)$	0) (b) Ordinary water	21.		not used for carrying drink
$(H_2 C)$			21,	water because	not used for carrying drink
	(c) Zinc rod	(d) Fused caustic soda			vered with a coating of lo
12.	Temporary hardness presence of	s of water is due to the	carb	oonate	-
	(a) Magnesium bicar	bonate (b) Calcium chloride		•	oded by air and moisture ning dissolved air attacks lo
	(c) Magnesium sulph	ate (d) Calcium carbonate		forming solut	
3.	Which of the following	ng is not true		(d) None of these	•
		er depends on its behaviour	22.		e following removes tempor
	towards soap			hardness of water	
	(b) The temporary	hardness is due to the			

- (b) The temporary hardness is due to the presence of *Ca* and *Mg* bicarbonates
- (c) Permanent hardness is due to the presence of soluble *Ca* and *Mg* sulphates, chlorides and nitrates
- (d) Permanent hardness can be removed by boiling the water
- 14. The molarity of pure water at $4^{\circ}C$ is
- (c) Passing it through sand

(a) Slaked lime

(c) Cuprous

hard water

Get More Learning Materials Here :

23.

(b) Plaster of Paris

(d) Hydrolith

Which of the following will cause softening of

(a) Passing it through cation exchange resin

(b) Passing it through anion exchange resin

Hydrogen	and	Its	compounds	691
----------	-----	-----	-----------	-----

	(d) Passing it through alumina				
24.		33. 005]			
	(a) Sodalime (b) Sodiumbicarbonate				
	(c) Washing soda (d) Sodium chloride				
25.	Permutit is technical name given to				
	(a) Aluminates of calcium and sodium	bon			
	(b) Silicates of calcium and sodium				
	(c) Hydrated silicates of aluminium and sodium	34.			
	(d) Silicates of calcium and magnesium				
6.	The approximate mass of tritium oxide molecule is				
	(a) 18 amu (b) 20 amu				
	(c) 22 amu (d) 24 amu				
7.	Molecular weight of heavy water is				
	(a) 19 (b) 18				
	(c) 17 (d) 20				
8.	Water is said to be permanently hard when it contains				
	(a) Sulphates of <i>Mg</i> and <i>Ca</i>				
	(b) Bicarbonates of Mg and Ca				
	(c) Sulphates of <i>Cu</i> and <i>Hg</i>	35.			
	(d) Carbonates and bicarbonates of Mg and Ca				
9.	Sodium sulphate is soluble in water but barium sulphate is insoluble because [Pb. PMT 1995]	36.			
	(a) The hydration energy of Na_2SO_4 is more than	30.			
	its lattice energy				
	(b) The lattice energy of $BaSO_4$ is more than its				
	hydration energy				
	(c) The lattice energy has no role to play in solubility				
	(d) The hydration energy of Na_2SO_4 is less than	37.			
	its lattice energy	2,.			
	(e) Both (a) and (b)				
30.	The alum used for purifying water is[EAMCET 1999]				
	(a) Ferric alum (b) Chrome alum	38.			
	(c) Potash alum (d) Ammonium alum				
31.	Which of the following metal will not reduce H_2O				
	[CPMT 1999]	20			
	(a) <i>Ca</i> (b) <i>Fe</i>	39.			
	(c) <i>Cu</i> (d) <i>Li</i>				
2.	Which of the following is correct about heavy water				
	[DCE 2002]				
	(a) Water at 4°C having maximum density is known as heavy water	40.			
	(b) It is heavier than water (H_2O)				

- (b) It is heavier than water (H_2O)
- (c) It is formed by the combination of heavier isotope of hydrogen and oxygen

(d) None of these

The boiling point of water is exceptionally high because 1

[KCET 2001]

- (a) There is covalent bond between H and O
- (b) Water molecule is linear
- (c) Water molecules associate due to hydrogen nding
 - (d) Water molecule is not linear
- Match list I with list II and select the correct answer using the codes given below the lists[SCRA 2001]

	List I		List II
1.	Heavy water		(a) Bicarbonates of <i>Mg</i> and <i>Ca</i> in water
2.	Temporary water	hard	(b) No foreign ions in water
3.	Soft water		(c) <i>D</i> ₂ <i>O</i>
4	Permanent water	hard	(d) Sulphates and chlorides of <i>Mg</i> and <i>Ca</i> in water

Codes

- (a) 1-c, 2-d, 3-b, 4-a (b) 1-b, 2-a, 3-c, 4-d
- (c) 1-b, 2-d, 3-c, 4-a (d) 1-c, 2-a, 3-b, 4-d

The H - O - H angle in water molecule is about [AFMC 2001]

- (b) 180° (a) 90° (c) 102° (d) 105°
- When two ice cubes are pressed over each other, they unite to form one cube. Which of the following forces is responsible to hold them together [AFMC 2001] (a) Hydrogen bond formation
 - (b) Van der Waals forces
 - (c) Covalent attraction
 - (d) Ionic interaction
- What is formed when calcium carbide reacts with heavy water [Manipal PMT 2001; Pb. CET 2000] (a) $C_2 D_2$ (b) CaD_2
 - (c) Ca_2D_2O (d) CD_2

Pure water can be obtained from sea water by [CBSE PMT 2001]

🕀 www.studentbro.in

- (a) Centrifugation (b) Plasmolysis (d) Sedimentation (c) Reverse osmosis
- Action of water or dilute mineral acids on metals can give [Kerala PMT 2002]
 - (a) Monohydrogen (b) Tritium
 - (c) Dihydrogen (d) Trihydrogen
 - (e) D_2

- Metal which does not react with cold water but evolves H_2 with steam is [DCE 2002]
 - (a) Na (b) *K*
 - (c) *Pt* (d) *Fe*
- pH of neutral water at room temperature nearly 41.

	692 Hydrogen an				
	(a) 0	(b) 14		(a) MnO_2	(b) <i>PbO</i> ₂
	(c) 7	(d) 10^{-7}		(c) <i>BaO</i> ₂	(d) None of these
42.	Maximum number of hy	ydrogen bonding in H_2O is	6.	The oxide that gives hy	drogen peroxide (H_2O_2) on
	[DCE 2004; MP PET 200	04; MP PMT 2004; BHU 2004]			lute acid (H_2SO_4) is[Pb. PMT :
	(a) 1	(b) 2		(a) MnO_2	(b) PbO_2
	(c) 3	(d) 4		-	-
4 3 .	The low density of ice of	compared to water is due to		(c) Na_2O_2	(d) TiO_2
		[Pb. CET 2004]	7.	Hydrogen peroxide is r	-
	=	iced dipole interactions			CBSE PMT 2000; KCET 2002]
	(b) Dipole-induced dipo			(a) Ozone	
	(c) Hydrogen bonding i			(b) Barium peroxide	
	(d) Dipole-dipole intera			(c) Acidic solution of <i>k</i>	
44.		g acid is formed when SiF_4		(d) Lead sulphide susp	
	reacts with water	[BHU 2004]	8.	The reaction of $H_2S + H_2$	$T_2O_2 \rightarrow S + 2H_2O$ manifests
	(a) <i>SiF</i> ₄	(b) H_2SiF_4			[UPSEAT 2000]
				(a) Acidic nature of H_2	-
	(c) H_2SO_4	(d) H_2SiF_6		(b) Alkaline nature of <i>b</i>	H_2O_2
4 5 .	Triple point of water is			(c) Oxidising nature of	H_2O_2
	(a) 273 <i>K</i>	(b) 373 <i>K</i>		(d) Reducing action of	H_2O_2
	(c) 203 <i>K</i>	(d) 193 <i>K</i>	9.	-	the reaction of H_2O_2 with
46.	Hardness of water is di	cdness of water is due to presence of salts of		Cl ₂	
	(a) Na^+ and K^+	[BHU 2005] (b) Ca ²⁺ and Mg ²⁺			[RPET 2003]
	(c) Ca^{2+} and K^{+}	(d) Ca^{2+} and Na^{+}		(a) $O_2 + HOCl$	(b) $HCl + O_2$
		(a) ca ana na		(c) $H_2O + HCl$	(d) $HCl + H_2$
	Hydrogen	peroxide	10	-	_
			10.	H_2O_2 will oxidise	[Roorkee 1995]
1.	In which of the foll	lowing reaction hydrogen		(a) $KMnO_4$	(b) <i>PbS</i>
	peroxide is a reducing a			(c) MnO_2	(d) H_2S
	(a) $2FeCl_2 + 2HCl + H_2O_2$	$\rightarrow 2FeCl_3 + 2H_2O$	11.	Fenton's reagent is	[MP PET 2000; RPET 2000]
	(b) $Cl_2 + H_2O_2 \rightarrow 2HCl +$	O_2		(a) <i>FeSO</i> $_4 + H_2O_2$	(b) $Zn + HCl$
	(c) $2HI + H_2O_2 \rightarrow 2H_2O + C$			(c) $Sn + HCl$	(d) None of these
	(d) $H_2SO_3 + H_2O_2 \rightarrow H_2S$	-	12.	The structure of H_2O_2 is	s [CBSE 1999; AFMC 2004]
	(a) $\Pi_2 \cup U_3 + \Pi_2 \cup U_2 \rightarrow \Pi_2 \cup$	0 ₄ 11 ₂ 0		(a) Planar	(b) Linear
_		the malasses of the design		(,	(U) Lilleal
2.		f 10 volume of hydrogen	1	(c) Spherical	(d) Non-planar
2.	peroxide solution. Calc	ulate its strength[UPSEAT 2001	ı] 13.		(d) Non-planar
2.	peroxide solution. Calco (a) 3.00%	ulate its strength[UPSEAT 2001 (b) 4.045%		(c) Spherical	(d) Non-planar
	peroxide solution. Calco (a) 3.00% (c) 2.509%	ulate its strength[UPSEAT 2001 (b) 4.045% (d) 3.035%		(c) Spherical	(d) Non-planar 1.5 $N H_2O_2$ solution is
	peroxide solution. Calco (a) 3.00% (c) 2.509%	ulate its strength[UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003;		(c) Spherical The volume strength of	 (d) Non-planar 1.5 N H₂O₂ solution is [BHU 2004; Pb. CET 2004]
	peroxide solution. Calcu (a) 3.00% (c) 2.509% In lab H_2O_2 is prepared	ulate its strength[UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003; Pb. PMT 2004; BCECE 2005]		 (c) Spherical The volume strength of (a) 8.4 <i>litres</i> (c) 16.8 <i>litres</i> 	 (d) Non-planar 1.5 N H₂O₂ solution is [BHU 2004; Pb. CET 2004] (b) 4.2 litres
	peroxide solution. Calcu (a) 3.00% (c) 2.509% In lab H_2O_2 is prepared (a) Cold $H_2SO_4 + BaO_2$	ulate its strength[UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003; Pb. PMT 2004; BCECE 2005] (b) <i>HCl</i> +BaO ₂	13.	 (c) Spherical The volume strength of (a) 8.4 <i>litres</i> (c) 16.8 <i>litres</i> 	 (d) Non-planar 1.5 N H₂O₂ solution is [BHU 2004; Pb. CET 2004] (b) 4.2 litres (d) 5.2 litres
3.	peroxide solution. Calcu (a) 3.00% (c) 2.509% In lab H_2O_2 is prepared (a) Cold $H_2SO_4 + BaO_2$ (c) Conc. $H_2SO_4 + Na_2O_2$	ulate its strength[UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003; Pb. PMT 2004; BCECE 2005] (b) $HCl + BaO_2$ (d) $H_2 + O_2$	13.	 (c) Spherical The volume strength of (a) 8.4 <i>litres</i> (c) 16.8 <i>litres</i> The volume of oxygen 	(d) Non-planar 1.5 $N H_2O_2$ solution is [BHU 2004; Pb. CET 2004] (b) 4.2 litres (d) 5.2 litres liberated from 15 ml of 20
3.	peroxide solution. Calcu (a) 3.00% (c) 2.509% In lab H_2O_2 is prepared (a) Cold $H_2SO_4 + BaO_2$ (c) Conc. $H_2SO_4 + Na_2O_2$ The structure of H_2O_2 is	ulate its strength[UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003; Pb. PMT 2004; BCECE 2005] (b) $HCl + BaO_2$ (d) $H_2 + O_2$ is [UPSEAT 2001]	13.	(c) Spherical The volume strength of (a) 8.4 <i>litres</i> (c) 16.8 <i>litres</i> The volume of oxygen volume H_2O_2 is	(d) Non-planar 1.5 $N H_2O_2$ solution is [BHU 2004; Pb. CET 2004] (b) 4.2 litres (d) 5.2 litres liberated from 15 ml of 20 [MH CET 2003]
3.	peroxide solution. Calculate (a) 3.00% (c) 2.509% In lab H_2O_2 is prepared (a) Cold $H_2SO_4 + BaO_2$ (c) Conc. $H_2SO_4 + Na_2O_2$ The structure of H_2O_2 if (a) $H_{O-O}H$	ulate its strength [UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003; Pb. PMT 2004; BCECE 2005] (b) $HCl + BaO_2$ (d) $H_2 + O_2$ is [UPSEAT 2001] (b) $\stackrel{H}{\longrightarrow} O - O_{H}$	13.	(c) Spherical The volume strength of (a) 8.4 <i>litres</i> (c) 16.8 <i>litres</i> The volume of oxygen volume H_2O_2 is (a) 250 ml (c) 150 ml	(d) Non-planar 1.5 $N H_2O_2$ solution is [BHU 2004; Pb. CET 2004] (b) 4.2 litres (d) 5.2 litres liberated from 15 ml of 20 [MH CET 2003] (b) 300 ml (d) 200 ml es of a solution containing
2. 3. 4.	peroxide solution. Calculate (a) 3.00% (c) 2.509% In lab H_2O_2 is prepared (a) Cold $H_2SO_4 + BaO_2$ (c) Conc. $H_2SO_4 + Na_2O_2$ The structure of H_2O_2 if (a) $H_{O-O}H$	ulate its strength [UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003; Pb. PMT 2004; BCECE 2005] (b) $HCl + BaO_2$ (d) $H_2 + O_2$ is [UPSEAT 2001] (b) $\stackrel{H}{\longrightarrow} O - O_{H}$	13. 14.	(c) Spherical The volume strength of (a) 8.4 <i>litres</i> (c) 16.8 <i>litres</i> The volume of oxygen volume H_2O_2 is (a) 250 ml (c) 150 ml The strength in volum	(d) Non-planar 1.5 $N H_2O_2$ solution is [BHU 2004; Pb. CET 2004] (b) 4.2 litres (d) 5.2 litres liberated from 15 ml of 20 [MH CET 2003] (b) 300 ml (d) 200 ml es of a solution containing
3.	peroxide solution. Calcu (a) 3.00% (c) 2.509% In lab H_2O_2 is prepared (a) Cold $H_2SO_4 + BaO_2$ (c) Conc. $H_2SO_4 + Na_2O_2$ The structure of H_2O_2 is	ulate its strength [UPSEAT 2001 (b) 4.045% (d) 3.035% d by[CPMT 2002; MH CET 2003; Pb. PMT 2004; BCECE 2005] (b) $HCl + BaO_2$ (d) $H_2 + O_2$ is [UPSEAT 2001] (b) $\stackrel{H}{\longrightarrow} O - O_{H}$	13. 14.	(c) Spherical The volume strength of (a) 8.4 <i>litres</i> (c) 16.8 <i>litres</i> The volume of oxygen volume H_2O_2 is (a) 250 ml (c) 150 ml The strength in volum 30.36 g/litre of H_2O_2 is	(d) Non-planar 1.5 $N H_2O_2$ solution is [BHU 2004; Pb. CET 2004] (b) 4.2 litres (d) 5.2 litres liberated from 15 ml of 20 [MH CET 2003] (b) 300 ml (d) 200 ml es of a solution containing [UPSEAT 2004]

HCl is added to the following oxides which one 5٠ would give H_2O_2 [Kurukshetra CEE 1998]

(a) Oxidising agent (b) Reducing agent

≫

CLICK HERE

Regional www.studentbro.in

Get More Learning Materials Here : 📕

	(c) Both as oxidising and re	ducing agent			
	(d) Drying agent				
17.	Equivalent weight of H_2O_2	is			
) 34			
. 0) 18			
18.	20 volume H_2O_2 solution has				
) 6%			
19.) 10%			
19.	H_2O_2 is manufactured these days [DCE 2004] (a) By the action of H_2O_2 on BaO_2				
	(b) By the action of H_2SO_4				
	(c) By electrolysis of 50%	2 .			
	(d) By burning hydrogen in				
20.	Which one of the following (2) NO	-			
	-) MnO_2			
	-) <i>SO</i> ₂			
21.	1 <i>ml</i> of H_2O_2 solution gives	10 ml of O_2 at NTP. It			
	is $(a) 10 \text{ yel} U (b)$) 20 vol. H_2O_2			
	2 2) 40 vol. H_2O_2			
22.	Which substance does not spot H_2O_2	peed up decomposition			
	(a) Glycerol (b)) Pt			
	(c) Gold (d)) <i>MnO</i> ₂			
23.	Which of the following c H_2O_2	annot be oxidised by			
	(a) O_3 (b)) KI / HCl			
	(c) <i>PbS</i> (d)) Na_2SO_3			
24.	Which substance cannot be	reduced by H_2O_2			
	(a) $KMnO_4 / H_2SO_4$ (b)) $K_2 Cr_2 O_7 / H_2 SO_4$			
	(c) Ag_2O (d)) Fe^{3+}			
25.		ements is incorrect			
0	(a) H_2O_2 can act as an oxid				
	(b) H_2O_2 can act as a reduc	ing agent			
	(c) H_2O_2 has acidic propert	ies			
	(d) H_2O_2 has basic properti				
26.					
	(a) Poor polar solvent than	water			
	(b) Better polar solvent that				
	(c) Both have equal polarity	1			
	(d) Better polar solvent	-			
25	oxidising ability limits i				

- **27.** H_2O_2 used in rockets has the concentration
 - (a) 50% (b) 70%

	Hydrogen and Its compounds 693
	(c) 30% (d) 90%
28.	H_2O_2 is a
	(a) Weak acid (b) Weak base
	(c) Neutral (d) None of these
29.	Nitrates of all metals are
	(a) Soluble in water (b) Insoluble
	(c) Coloured (d) Unstable
30.	
	(a) $NaOH$ (b) MnO_2
	(c) Acetanilide (d) Oxalic acid
31.	H_2O_2 is always stored in black bottles because
	(a) It is highly unstable
	(b) Its enthalpy of decomposition is high
etan	(c) It undergo autooxidation on prolonge
stall	ding (d) None of these
32.	H_2O_2 on reacting with ethene gives
0	(a) Ethane (b) Ethanal
	(c) Ethylene glycol (d) Ethanol
33.	Which of the following is wrong about H_2O_2 ? It i
	used
	(a) As aerating agent in production of spon
rubb	
	(b) As an antichlor
nain	(c) For restoring white colour of blackened leanting
pain	(d) None of these
34.	$H_2O_2 \rightarrow 2H^+ + O_2 + 2e^-$; $E^\circ = -0.68 V$. This equation
54.	represents which of the following behaviour of
	H_2O_2
	(a) Reducing (b) Oxidising
	(c) Acidic (d) Catalytic
35.	The structure of H_2O_2 is
	(a) Open book like (b) Linear
	(c) Closed book (d) Pyramidal
36.	On shaking H_2O_2 with acidified potassium
	dichromate and ether, ethereal layer becomes
	(a) Green (b) Red
27	(c) Blue (d) Black V of $H(Q)$ is of the order of IND DWT 1004
37.	K_a of H_2O_2 is of the order of [MP PMT 1994]
	(a) 10^{-12} (b) 10^{-14}
- 0	(c) 10^{-16} (d) 10^{-10}
38.	In which of the following reactions, H_2O_2 acts a producing agent
	a reducing agent [EAMCET 2001 (a) $PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$
	(b) $Na_2SO_3(aq) + H_2O_2(aq) \rightarrow Na_2SO_4(aq) + H_2O(l)$
	(c) $2Kl(aq) + H_2O_2(aq) \rightarrow 2KOH(aq) + I_2(s)$

Regional www.studentbro.in

Get More Learning Materials Here : 💻

	(d) $KNO_2(aq) + H_2O_2(aq) \rightarrow$	$KNO_3(aq) + H_2O(l)$		(0
39.	H_2O_2 acts as an oxidisin	g agent in [Kerala PMT 2004]	6.	Η
	(a) Neutral medium			(a
	(b) Acidic medium			(t
	(c) Alkaline medium			(0
	(d) Alkaline and neutral	medium	_	(0
	(e) Acidic and alkaline n	nedium	7.	W
40.	The $H - O - O$ bond angle	e in H_2O_2 is[Kerala PMT 2004]		(a
	(a) 107.28°	(b) 109.28°		(t (c
	(c) 104.5 ^o	(d) 106 ^o		(0
	(e) 97 ^{<i>o</i>}		8.	Pi
41.		liberated from 0.68 gm of	cold	(a wa
	H_2O_2 is			(t
	(-) 112 1	[Pb. PMT 2004]		
	(a) 112 ml	(b) 224 <i>ml</i>		(0
	(c) 56 ml	(d) 336 ml		
				(0
	Critica	l Thinking	9.	H ao
				(a
		Objective Questions		(

- **1.** Polyphosphates are used as water softening agents because they
 - (a) Form soluble complexes with anionic species
 - (b) Precipitate anionic species
 - (c) Forms soluble complexes with cationic species(d) Precipitate cationic species
- 2. The critical temperature of water is higher than that of O_2 because H_2O molecule has [IIT 1997]
 - (a) Fewer electrons than oxygen
 - (b) Two covalent bonds
 - (c) V-shape
 - (d) Dipole moment
- 3. One mole of calcium phosphide on reaction with excess water gives [IIT 1999]
 - (a) One mole of phosphene
 - (b) Two moles of phosphoric acid
 - (c) Two moles of phosphene
 - (d) One mole of phosphorus pentaoxide
- **4.** When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water the sodium ions are exchanged with
 - (a) H^+ ions (b) Ca^{2+} ions
 - (c) Mg^{2+} ions (d) Both Ca^{2+} and Mg^{2+}
- 5. Hydrogen peroxide is
 - (a) A stronger acid than water
 - (b) A weaker acid than water
 - (c) An oxidising agent

- (d) A reducing agent
 Hydrogen can be obtained from water by
 (a) Reaction with metal oxides
 (b) Reaction with non-metal oxides
 (c) Reaction with metals
- (d) Reaction with metal hydrides
- Which of the following is/are hard water(s)
 - (a) Water containing some potash alum
 - (b) Water containing a few drops of HCl
 - (c) Water containing common salt
 - (d) Water containing calcium nitrate
- Pick the odd one out

(a) Sodium borohydride reacts very slowly with cold water

- (b) Sodium borohydride reacts very violently with cold water to produce H_2
- (c) Solubility of sodium borohydride in water at 25°C is 10.05 g/mL
- (d) Melting point of sodium borohydride is 500°C
- **9.** Hydrogen can be obtained from water, by the action of water on
 - (a) Calcium carbide (b) Calcium hydride
 - (c) Calcium oxide (d) Calcium
- 10. What is true about ice
 - (a) Its density is more than water
 - [IIT]EE (Screening) 2002] (c) It is a thermal insulator
 - (d) Its density is less than water
- **11.** Hydrogen will not reduce
 - (a) Heated cupric oxide (b) Heated ferric oxide

(c) Heated stannic oxide (d) Heated aluminium oxide

- **12.** *HCl* is added to following oxides. Which one would give H_2O_2 [IIT 1980]
 - (a) MnO_2 (b) PbO_2
 - (c) *BaO* (d) None of these
- Which of the following pair will not produce dihydrogen gas

[IIT 1994]

[IIT 1985]

- (a) Cu + HCl(dil.) (b) $Fe + H_2SO_4$
- (c) Mg + steam (d) Na + alcohol
- **14.** The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is
 - $\begin{bmatrix} IIIT 1990 \\ (a) 2.5 g \\ (c) 3.0 g \end{bmatrix} (b) 25.5 g \\ (d) 8.0 g$
- 15. Hydrogen is evolved by the action of cold dil. HNO_3 on

[IIT 1998]

(a) *Fe*

(b) *Mn*

	(c) <i>Cu</i> (d) <i>Al</i>	
16.	Hydrogen can behave as a metal	27.
10.	(a) At very high temperature (b)	
	(c) At very high pressure (d)At very low pressure	
17.	D_2O is preferred to H_2O , as a moderator, in	28.
	nuclear reactors because	
	(a) D_2O slows down fast neutrons better	
	(b) D_2O has high specific heat	29.
	(c) D_2O is cheaper	-91
	(d) None of these	
18.	Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is	
	(a) Ortho (b) Meta	30.
	(c) Para (d) All have same energy	500
19.	Saline hydrides react explosively with water, such fires can be extinguished by	
	(a) Water (b) Carbon dioxide	
	(c) Sand (d) None of these	
20.	Metals of groups 7, 8 and 9 do not form metallic hydrides. This is termed as	31.
	(a) Hydride gap (b) Hydride shift	
	(c) Anhydride (d) Dehydride	
21.	When temporary hard water containing $Mg(HCO_3)_2$ is boiled the ppt. formed is of	32.
	(a) $MgCO_3$ (b) MgO	
	(c) $Mg(OH)_2$ (d) None of these	
22.	Permanent hardness due to Mg^{2+} ions is best	
	removed by	
	(a) $Ca(OH)_2$ (b) Na_2CO_3	
	(c) $Na_2CO_3 + Ca(OH)_2$ (d) None of these	
23.	The most abundant element in the universe is	
	(a) Carbon(b) Silicon(c) Hydrogen(d) Helium	
24.	Pick out the correct statement	Rea
	(a) By decreasing the temperature pure para- hydrogen can be obtained	cori (a)
	(b) By increasing the temperature pure ortho- hydrogen can be obtained	(b)
	(c) By decreasing the temperature pure ortho- hydrogen can be obtained	(c)
	(d) By increasing the temperature pure para- hydrogen can be obtained	(d) (e)
25.	Hydrogen can be produced by heating	1
	(a) Cu with H_2SO_4 (b) Sodium formate	1.

- (a) Cu with H_2SO_4 (b) Sodium formate
- (c) Sodium oxalate (d) None of these
- **26.** Plumbosolvency is a health hazard in the transportation of
 - (a) Hard water only
 - (b) Soft water only
 - (c) Both (a) and (b)

	nyulogen anu i	
	(d) Water containing	
27	A sample of water co	ntains sodium chloride. It is
	At Very Hard Water	
	(c) Moderately hard	(d) None of these
28	water decreases with	g salt, whose solubility ir n rise of temperature is
	(a) $CaCl_2$	(b) $CaSO_4$
	(c) $Ca(HCO_3)_2$	(d) $MgSO_4$
29	table sugar and cor	containing some dissolved nmon salt is passed through e resins. The resulting water
	(a) Tasteless	(b) Sweet
	(c) Salty	(d) None of these
30	. Water obtained by	purification with organic ior
	exchange resins is	
	(a) Pure water	
	(b) Free from only <i>C</i>	Za^{2+} , Mg^{2+} ions
	(c) Free from HCO_3^- ,	SO_4^{2-} and Cl^- ions only
	(d) None of these	
31	• Which of the followitypes of hardness of	ng can effectively remove al water
	(a) Soap	(b) Washing soda
	(c) Slaked lime	(d) None of these
32		ole of hydrogen peroxide i
		ne. Its percentage strength is
	nearly	[KCET 2005]
	(a) 1%	(b) 3%
	(c) 10%	(d) 90%

For ANMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- Assertion : Hydrogen combines with other elements by losing, gaining or sharing of electrons.
 - Reason : Hydrogen forms electrovalent and covalent bonds with other elements.
- **2.** Assertion : Calgon is used for removing Ca^{2+} and Mg^{2+} ions from hard water.

	Reason :	Calgon forms precipitates with Ca^{2+} and Mg^{2+} .
3.	Assertion :	Decomposition of H_2O_2 is a disproportionation reaction.
	Reason :	H_2O_2 molecule simultaneously undergoes oxidation and reduction.
4.	Assertion :	H_2O_2 has higher boiling point than water.
	Reason :	H_2O_2 has stronger dipole-dipole interactions than water.
5۰	Assertion :	H_2O_2 is not stored in glass bottles.
	Reason :	Alkali oxides present in glass catalyse the decomposition of H_2O_2 .
6.	Assertion :	H_2O_2 reduces Cl_2 to HCl .
	Reason :	H_2O_2 is called antichlor.
7.	Assertion :	In acidic medium, H_2O_2 reacts with
		MnO_2 to give O_2 .
	Reason :	H_2O_2 is a strong oxidising agent.
8.	Assertion :	In alkaline solution, H_2O_2 reacts with potassium ferricyanide.
	Reason :	H_2O_2 is a strong reducing agent.
9.	Assertion :	Acidulated water is an example of hard water.
	Reason :	In the presence of an acid, soap is converted into insoluble free fatty acids.
10.	Assertion :	Hydrogen peroxide forms only one series of salts called peroxides.
	Reason :	Hydrogen peroxide molecule has only one replaceable hydrogen atom.

	Hydrogen											
1	a	2	d	3	a	4	а	5	d			
6	d	7	b	8	a	9	с	10	a			
11	с	12	a	13	c	14	b	15	d			
16	а	17	d	18	d	19	c	20	d			
21	b	22	b	23	c	24	c	25	d			
26	b	27	С	28	a	29	b	30	a			
31	с	32	d	33	d	34	d	35	c			

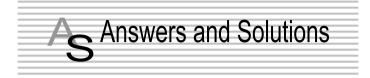
36	d	37	a	38	a	39	С	40	C
41	с	42	d	43	d	44	b	45	c
46	b	47	a	48	a	49	c	50	d
51	с	52	d	53	b	54	d	55	с
56	b	57	b	58	b	59	d	60	a
61	b	62	a	63	b	64	b	65	b
66	С	67	C	68	C	69	C	70	a
71	d	72	C	73	а	74	C	75	d
76	С	77	d	78	b	79	а	80	a
81	C	82	C	83	b	84	C		

Water or hydride of oxygen

1	b	2	b	3	С	4	b	5	c
6	а	7	b	8	b	9	c	10	b
11	а	12	а	13	d	14	d	15	d
16	c	17	b	18	b	19	c	20	d
21	c	22	а	23	а	24	C	25	c
26	c	27	d	28	а	29	е	30	c
31	c	32	c	33	c	34	d	35	d
36	а	37	а	38	c	39	C	40	d
41	c	42	d	43	c	44	b	45	а
46.	b								

Hydrogen peroxide

1	В	2	d	3	а	4	b	5	С
6	C	7	d	8	C	9	b	10	b
11	а	12	d	13	а	14	b	15	a
16	C	17	а	18	b	19	C	20	C
21	а	22	а	23	а	24	d	25	d
26	d	27	d	28	а	29	а	30	C
31	c	32	C	33	d	34	а	35	a
36	C	37	а	38	а	39	е	40	е
41	b								


Critical Thinking Questions

1	С	2	d	3	C	4	d	5	acd
6	cd	7	abd	8	b	9	bd	10	cd
11	d	12	d	13	a	14	b	15	b
16	C	17	d	18	C	19	c	20	a
21	C	22	c	23	C	24	b	25	b
26	b	27	b	28	b	29	b	30	d
31	а	32	b						
			Asse	ertion	8 R	easo	n		

🕀 www.studentbro.in

1	а	2	d	3	a	4	C	5	a
6	а	7	b	8	a	9	a	10	d

Hydrogen and its preparation

- 1. (a) $NaH + H_2O \rightarrow NaOH + H_2 \uparrow$
- **2.** (d) $KH + H_2O \rightarrow KOH + H_2 \uparrow$
- **3.** (a) Hydrogen burns in air with a light bluish flame.
- (a) Ortho and para hydrogen show different spin in a hydrogen molecule it does not show hydrogen isotopes.
- 5. (d) Boiling point of liquid hydrogen is lowest of given substances so it is distilled first.
- 6. (d) $Mg + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2 \uparrow$
- 8. (a) $Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$
- **10.** (a) Ortho and para hydrogen differ in proton spin.

11. (c)
$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$$

- **12.** (a) $Mg + 2HCl \rightarrow MgCl_2 + H_2 \uparrow$
- 13. (c) Order of adsorption of H₂ (occlusion) is
 Colloidal Palladium > Palladium > Platinum > Gold > Nickel
- 14. (b) Number of neutrons = Mass number Atomic number
 - = 3 1 = 2
- **17.** (d) Because *Al* has more affinity for oxygen than hydrogen.
- 18. (d) Helium is a noble gas and does not combine with hydrogen.
- 19. (c) Occlusion is the phenomenon of adsorption of hydrogen by metal.
- **20.** (d) CaH_2 is known as hydrolith.
- **21.** (b) *Zn* displaces hydrogen from the boiling solution of *NaOH*.

 $Zn + 2NaOH + 2H_2O \rightarrow Na_2[Zn(OH)_4] + H_2 \uparrow$

- **22.** (b) Occluded hydrogen is the hydrogen absorbed by the metal.
- **23.** (c) Because dihydrogen is less reactive.
- **24.** (c) $_{1}H^{3}$ has 3 nucleons (1 proton + 2 neutrons) and one electron so sum of these is 3 + 1 = 4.
- **25.** (d) ${}_{1}^{2}D_{2}$ = (2 neutrons + 2 protons) = 4 nucleons.
- **26.** (b) Solubility of ionic compound is lower in heavy water.

Hydrogen and Its compounds 697

- **27.** (c) These allotropic forms have similar chemical properties.
- **28.** (a) It is 0.4 kJ/mol.
- **29.** (b) $H^- = 1s^2$; $He = 1s^2$
- **30.** (a) A fusion reaction is difficult to occur because positively charged nuclei repel each-other. At very high temperatures of the order of 10^6 to $10^7 K$, the nuclei may have sufficient energy to overcome the repulsive forces and fuse. It is for this reason, fusion reactions are also called thermonuclear reactions. Hence, hydrogen can be fused to form helium at high temperature and high pressure.
- **31.** (c) It is Bosch process.
- **32.** (d) Gold is a noble metal.
- **33.** (d) $Ca + H_2 \rightarrow CaH_2 \xrightarrow{2H_2O} Ca(OH)_2 + 2H_2$
- 34. (d) Hydrogen can loose one electron (*e.g. HF*). It can gain one electron (*e.g. NaH*), Hydrogen can also share one electron (*e.g. H H*).
- **35.** (c) Hydrogen is a much lighter element than alkali metals or halogen.
- 36. (d) Heavy water is not unstable.

37. (a)
$$M^+H^- \rightarrow M^+ + H^-_{\text{Hydride ion}}$$

 $H^- \rightarrow \frac{1}{2}H_2 + e^-$ (At anode)

- **38.** (a) F_2 has maximum tendency to react with hydrogen. the decreasing order of reactivity is $F_2 > Cl_2 > Br_2 > I_2$.
- **39.** (c) It acts both as a reducing agent and oxidising agent.
- **40.** (c) $H \to H^+ + e^-$

 $H + e^- \rightarrow H^-$

- 41. (c) IE of *H* is 1312 *kJ/mole*.IE of *Cl* is 1255 *kJ/mole*.
- 42. (d) Alkali metals are good reducing agents because of low ionization energy and hydrogen also shows same character.
- (d) Position of hydrogen in the periodic table is not fully justified.
- **44.** (b) $H_2 + Cl_2 \rightarrow H^+Cl^-$. In this hydrogen has positive oxidation state.
- **45.** (c) For example HF, NaH, H_2

Get More Learning Materials Here :

46. (b) $2Na + H_2 \rightarrow 2Na^+H^-$

Hydrogen has -ve (-1) oxidation state.

47. (a) $NaH \Rightarrow Na^+ + H^-$

At anode : $H^- \rightarrow H + e^-$

$$H + H \rightarrow H_2$$

- **48.** (a) For example *HCl* is a protonic acid $HCl + H_2O \Rightarrow [H_3O]^+ + Cl^-$
- (c) Hydrogen resembles both alkali metals and halogens.
- **50.** (d) Chlorine has lone pair which it can donate to form co-ordinate bond while hydrogen cannot.
- **51.** (c) Actually these exist in the ratio.
 - Protium : Deuterium : Tritium 1 : 1.56×10^{-2} : 1×10^{-17}
- **52.** (d) $SO_3 + D_2O \rightarrow D_2SO_4$ dideutero-sulphuric acid.
- **53.** (b) H^1H^1 , H^1H^2 , H^2H^2 , H^3H^3 , H^2H^3
- 54. (d) $\overset{+2}{Ca} \overset{x}{H_2}$ *i.e.*, 2 + 2x = 0, x = -12x = -2 or $x = \frac{-2}{2} = -1$
- **55.** (c) Pure hydrogen is obtained by the electrolysis of $Ba(OH)_2$ solution in a *U*-tube using nickel electrode. The gas is liberated at the cathode and is passed over heated platinum gauze to remove oxygen if present as impurity.
- 56. (b) $\underbrace{CO + H_2}_{\text{water gas}} + H_2O \xrightarrow{\text{catalyst}} CO_2 + 2H_2$
- **57.** (b) Deuterium $\binom{2}{1}H$ and hydrogen $\binom{1}{1}H$ both have same atomic number but different mass number so they have similar chemical but different physical properties.

58. (b) ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}e$

59. (d) V.oil + $H_2 \xrightarrow{Ni}_{\Delta}$ Fat

- **60.** (a) $2H \Rightarrow H_2$; $\Delta H = -104.5$ kcal
- **61.** (b) Lavoisier give the name hydrogen which means water maker.
- **62.** (a) For diatomic gases (*e.g.* H_2) $r = C_p / C_v = 1.40$ For monoatomic gases r = 1.66

For triatomic gases r = 1.33

- **63.** (b) H_3 is also called Hyzone.
- **64.** (b) $4LiH + AlCl_3 \xrightarrow{\text{Ether}} LiAlH_4 + 3LiCl$
- **65.** (b) Alkali metal hydrides react with water to give metal hydroxide and H_2 *e.g.*,

 $NaH + H_2O \rightarrow NaOH + H_2$

Alkali metal hydroxides are strongly basic in nature.

- **66.** (c) Ionic hydrides are good reducing agents.
- 68. (c) Systematic name of water is oxidane.

- **69.** (c) BeH_2 and MgH_2 have significant covalent character.
- **70.** (a) Limiting composition of f block hydrides are MH_2 and MH_3 .
- **71.** (d) H_2 does not react with Au, Cu or Ni with Ca it gives CaH_2 . $Ca + H_2 \rightarrow CaH_2$
- 72. (c) $Ca(OH)_2$ is used for the softening of temporary hard water. $Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$
- 73. (a) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ \therefore Ratio of volumes of H_2 evolved is 1 : 1.
- (c) Anhydrous CaCl₂ is used for fast drying of neutral gases.
- **75.** (d) Hydrogen is the lightest gas.
- **76.** (c) An atom of tritium contains 1 proton, 1 electron and 2 neutrons.
- 77. (d) Hydrogen is a non-metal while all other members of group 1 (alkali metals) are metals.

78. (b)
$$H^{-}(aq) + H_2O(l) \to OH^{-}(aq) + H_2(g)$$

base 1 acid 2 base 2 acid 1

79. (a)
$$H + e^{-} \rightarrow H^{-}_{1s^{2} \text{ or } [He]^{2}}$$

 $F + e^{-}_{[He]^{2}2s^{2}2p^{5}} \rightarrow F^{-}_{[He]^{2}2s^{2}2p^{6} \text{ or } [Ne]^{10}}$

- **80.** (a) Hydrogen from bonds in +1 and -1 oxidation state.
- **81.** (c) Mercury (*Hg*) will not displace hydrogen.
- **82.** (c) Hydrogen is the lightest gas. It is insoluble in water.
- 83. (b) Hydrogen forms maximum number of compounds in chemistry comparison than carbon.
- **84.** (c) $Zn + H_2O \rightarrow ZnO + H_2$

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

- $Zn + 2HCl \rightarrow ZnCl_2 + H_2$
- $Zn + 2H_2SO_4 \rightarrow ZnSO_4 + SO_2 + 2H_2O$.

Water or hydride of oxygen

- 4. (b) $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 \downarrow + 4H_2O_3$
- 5. (c) D_2O in which $D = {}_1H^2$

9.

CLICK HERE

≫

- (b) HCO₃⁻ is main reason of temporary hardness of water.
- (b) By boiling temporary hardness of water can be removed.

🕀 www.studentbro.in

$$Ca(HCO_3)_2 \xrightarrow[(insoluble)]{\text{Boil}} CaCO_3 + H_2O + CO_2$$

(insoluble)
(c) $Na_2Al_2Si_2O_8 .xH_2O + Ca^{+2} \rightarrow$
Zeolite

 $CaAl_2Si_2O_8.xH_2O + 2Na^+$

- 10. (b) Water has high dielectric constant *i.e.*, 82, high liquid range and can dissolve maximum number of compounds. That is why it is used as universal solvent.
- **11.** (a) Heavy water *i.e.*, D_2O slows down the speed of neutrons in nuclear reactors..
- (a) Chlorides and sulphates of Mg and Ca produces permanent hardness and bicarbonates of Mg and Ca produces temporary hardness.
- (d) Permanent hardness cannot be removed by boiling of water but temporary hardness can be removed.
- 14. (d) The density of water is $1 g cm^{-3}$ at $4^{\circ}C$

so molarity
$$= \frac{1000}{18} = 55.5 M$$
.

15. (d) Water containing Ca^{+2} , Mg^{+2} and $H^+(>10^{-7}m)$ is a hard water.

 $H^+(aq) + CH_3COONa(aq) \Rightarrow CH_3COOH(s) + Na^+(aq)$

- 16. (c) Heavy water is used as a moderator to slow down the speed of fast moving neutrons and as well as a coolant.
- **17.** (b) Heavy water freezes at a slightly higher temperature than water.
- **18.** (b) *pH* of heavy water is slightly more than seven.
- **19.** (c) D_2O actually has higher freezing point (3.8°*C*) than water H_2O (0°*C*).
- **20.** (d) Colourless anhydrous $CuSO_4$ becomes blue on reaction with water.
- 21. (c) Due to plumbosolvancy, lead dissolves in water to a small extent to form soluble hydroxide which is poisonous so lead pipe is not used for carrying drinking water.
- **22.** (a) Slaked lime removes temporary hardness of water.

$$\begin{array}{c} Ca(OH)_2 + Ca(HCO_3)_2 \rightarrow 2CaCO_3 \downarrow + 2H_2O \\ \\ \text{From hard water} \end{array}$$

- **23.** (a) In cation exchange resin Mg^{+2} and Ca^{+2} (cations) are replaced by Na^+ ions.
- 24. (c) Washing soda removes both the temporary and permanent hardness by converting soluble calcium and magnesium compounds into insoluble carbonates.

$$CaCl_{2} + Na_{2}CO_{3} \rightarrow CaCO_{3} + 2NaCl$$
$$CaSO_{4} + Na_{2}CO_{3} \rightarrow CaCO_{3} + Na_{2}SO_{4}$$

$$Ca(HCO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaHCO_3.$$

25. (c) It is
$$Na_2Al_2Si_2O_8.xH_2O$$

- **26.** (c) ${}_{1}H_{2}^{3}O = 16 + 2 \times 3 = 22 amu$
- **27.** (d) $H_2 O(H = {}_1 H^2)$ 16 + 2 × 2 = 20 amu

2

30. (c) $K_2SO_4.Al_2(SO_4)_3.24H_2O_4$

Potash alum is generally used for purifying water.

- **31.** (c) Copper will not reduce H_2O to H_2 because of low reducing power of copper comparison than hydrogen.
- **32.** (c) Heavy water is formed by the combination of heavier isotope $({}_{1}H^{2} \text{ or } D)$ with oxygen.

$$D_2 + O_2 \rightarrow \frac{2D_2O}{\text{Heavy water}}$$

- **33.** (c) Water molecule associate due to inter molecular hydrogen bonding.
- **34.** (d) Heavy water is D_2O (1 c)

Temporary hard water contains bicarbonates of Ca^{2+} and $Mg^{2+}(2-a)$

Soft water may have no foreign ions (3-b).

Permanent hard water contains sulphates and chlorides of Ca^{+2} and $Mg^{2+}(4-d)$

- **35.** (d) The H O H angle in water molecule is about 105° (due to two lone pair of electron).
- **36.** (a) Two ice cubes when pressed over each other unite due to hydrogen bond formation.
- **37.** (a) $CaC_2 + 2D_2O \rightarrow C_2D_2 + Ca(OD)_2$
- **38.** (c) Pure water can be obtained from sea water by reverse osmosis.
- **39.** (c) Action of water on dil. Mineral acids (HCl, H_2SO_4) can give dihydrogen.
- **40.** (d) Iron (*Fe*) does not react with cold water to give H_2 . However, iron reacts with steam to give H_2 .
- **41.** (c) *pH* of neutral water at room temperature is seven.
- 43. (c) The low density of ice compared to water is due to hydrogen bonding interactions.
- **44.** (b) Silicon tetra fluoride on hydrolysis furnish ortho silicic acid and hydrogen silicofluoride.

$$\begin{array}{cccc} 3SiF_4 &+ 4H_2O \longrightarrow H_2SiO_4 + & 2H_2SiF_4 \\ (\text{Silicontetra} & (\text{Water}) & (\text{Ortho} & (\text{Hydrogen Silico} \\ \text{Fluoride}) & \text{Silicicacid}) & \text{Fluoride} \end{array}$$

- **45.** (a) The triple point of any substance is that temperature and pressure at which the material can exist in all three phases (Solid, liquid and gas) in equilibrium specifically the triple point of water is 273.16*K* at 611.2 *Pa*.
- **46.** (b) Hardness of water is due to the presence of bicarbonates, chlorides and sulphates of *Ca*

🕀 www.studentbro.in

CLICK HERE

 \gg

and M_g on it. These Ca^{2+} and Mg^{2+} ions react with the anions of fatty acids present in soaps to form curdy white precipitates. As a result, hard water does not produce lather with soap immediately.

Hydrogen peroxide

1. (b) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$

In this reaction H_2O_2 works as reducing agent

- **2.** (d) $[H_2O_2 \to H_2O + \frac{1}{2}O_2] \times 2$
 - $2H_2O_2 \rightarrow 2H_2O + O_2$ 22.4 *litre* at N.T.P.
 - :: 22.4 *litre* O_2 at N.T.P. obtained by 68 gm of H_2O_2
 - \therefore 10 *litre* O_2 at N.T.P. obtained by

$$\frac{68}{22.4}$$
 × 10 = 30.35 gm / litre

:. 1000 ml O_2 at N.T.P. obtained by = 30.35 gm

 \therefore 100 ml O_2 at N.T.P. obtained by

$$=\frac{30.35}{1000} \times 100 = 3.035\%$$

- 3. (a) $H_2SO_4 + BaO_2 \rightarrow BaSO_4 + H_2O_2$
- 5. (c) $BaO_2 + 2HCl \rightarrow BaCl_2 + H_2O_2$
- 6. (c) $Na_2O_2 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O_2$
- 7. (d) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_2$
- 8. (c) $H_2S + H_2O_2 \rightarrow S_0 + 2H_2O_0$

In this reaction H_2O_2 shows oxidising nature.

9. (b)
$$H_2O_2 + Cl_2 \rightarrow 2HCl + O_2$$

13. (a) Volume strength $= 5.6 \times \text{Normality}$

$$= 5.6 \times 1.5 = 8.4$$
 litre

14. (b) Quantity of $H_2O_2 = 15 ml$ and volume of $H_2O_2 = 20$

We know that 20 volume of H_2O_2 means 1 *litre* of this solution will give 20 *litre* of oxygen at N.T.P.

Since, oxygen liberated from 1000 *ml* (1 *litre*) of $H_2O_2 = 20$ *litre*, therefore oxygen liberate from 15 *ml* of H_2O_2 20

$$=\frac{20}{1000} \times 15 = 0.3 \ litre = 300 \ ml$$

15. (a) E.W. of
$$H_2O_2 = 17$$

 $N = \frac{30.36}{17} = 1.78 N$

Volume strength = $5.6 \times Normality$

 $= 5.6 \times 1.78 = 10$ litre

- **17.** (a) Equivalent weight of H_2O_2 is 17.
- **18.** (b) : 22.4 litre O_2 at N.T.P. obtained by 68 gm of H_2O_2

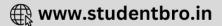
$$\therefore$$
 1 litre O_2 at N.T.P. obtained by $\frac{68}{22.4}$ gm of H_2O_2

 \therefore 20 litre $O_2\,$ at N.T.P. obtained by

 $\frac{68}{22.4} \times 20 \text{ gm of } H_2O_2 = 60.71 \text{ gm of } H_2O_2$

:. 1000 ml O_2 at N.T.P. obtained by = 60.71 gm of H_2O_2

$$\therefore 100 \quad ml \quad O_2 \quad \text{at N.T.P. obtained by}$$
$$= \frac{60.71}{1000} \times 100 = 6.71\%$$


- **19.** (c) Electrolysis of 50% sulphuric acid gives per disulphuric acid $(H_2S_2O_8)$ which on distillation yields 30% solution of hydrogen peroxide.
- **20.** (c) Due to O O bond.
- **21.** (a) 10 volume of H_2O_2 means 10 ml of O_2 is obtained from 1 ml of H_2O_2 .
- **22.** (a) Glycerol, phosphoric acid or acetanilide is added to H_2O_2 to check its decomposition.
- **23.** (a) H_2O_2 reduces O_3 to O_2

$$O_3 + H_2O_2 \rightarrow H_2O + 2O_2$$

- **24.** (d) Fe^{+3} cannot be reduced by H_2O_2 while all other get reduced.
- (d) Hydrogen peroxide does not show basic properties.
- **26.** (d) Although H_2O_2 is a better polar solvent than H_2O . However it cannot be used as such because of the strong autooxidation ability.
- **27.** (d) H_2O_2 is used as an oxidant for rocket fuel and has 90% concentration to be used in rockets.

28. (a)
$$H_2O_2 \rightarrow H_2O + [O]$$

weak acid

- **29.** (a) Lattice energy of all metal nitrate are less than that of their solvation energy so nitrates of metals soluble in water.
- **31.** (c) H_2O_2 is unstable liquid and decomposes into water and oxygen either on standing or on heating.

32. (c)
$$\underset{CH_2}{\overset{H}{\underset{}}} + H_2O_2 \rightarrow \underset{CH_2OH}{\overset{H}{\underset{}}}$$

- **33.** (d) H_2O_2 show all these properties.
- **34.** (a) As H_2O_2 is loosing electrons so it is acting as reducing agent.
- **36.** (c) This is due to the formation of CrO_5 .

$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow K_2SO_4 + 2CrO_5 + 5H_2O_{\text{Blue}}$$

37. (a) K_a of $H_2O_2 = 1.55 \times 10^{-12}$

38. (a) In the following reaction H_2O_2 acts as a reducing agent.

$$PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$$

39. (e) H_2O_2 acts as an oxidising agent in acidic and alkaline medium.

40. (e)
$$0^{-\frac{1.48\text{\AA}}{H}} C$$

 $H^{-\frac{1.48\text{\AA}}{97^{\circ}}} C$

41. (b) We know that

 $2H_2O_2 \longrightarrow 2H_2O + O_2$

$$2 \times 34 g$$
 22400 ml

 \therefore 2×34 gm = 68 gm of H_2O_2 liberates

22400 ml O_2 at STP

 \therefore .68 gm of H_2O_2 liberates

$$=\frac{.68\times22400}{68}=224\ ml$$

Critical Thinking Questions

- 1. (c) Polyphosphates (sodium hexametaphosphates, sodium tripolyphosphate or STPP) from soluble complexes with Ca^{+2} , Mg^{+2} present in hard water.
- 2. (d) Critical temperature of water is more than O_2 due to its dipole moment (Dipole moment of water = 1.84 *D*; Dipole moment of $O_2 = \text{zero } D$).
- 3. (c) $Ca_3P_2 + 6H_2O \rightarrow 2PH_3 + 3Ca(OH)_2$ (Cal. phosphide) phosphene 1 mole (2 moles)
- 4. (d) Zeolite when treated with hard water exchange Cu^{+2} and Mg^{+2} ions (present in hard water) with Na^+ ions.

6. (c,d)
$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$$

 $LiH + H_2O \rightarrow LiOH + H_2 \uparrow$

- 7. (a,b,d) Water containing any cation other than NH_4^+ and alkali metal is a hard water.
- (b) Reaction of *NaBH*⁴ with cold water is very slow. All other statements except (b) are correct.

9. (b,d)
$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2 \uparrow$$

 $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2 \uparrow$

- 10. (c,d) Ice is a poor conductor of heat (a good thermal insulator) and its density is less than water.
- **11.** (d) H_2 will not reduce heated Al_2O_3 .
- 12. (d) MnO_2 , PbO_2 and BaO will not give H_2O_2 with $HCl.MnO_2$ and PbO_2 will give Cl_2 and BaO will react with HCl to give $BaCl_2$ and water.
- **13.** (a) *Cu* and dil. *HCl* will not produce H_2 .
- 14. (b) Strength = Normality × Eq. mass = 1.5×17 (eq. mass of H_2O_2)

$$= 25.5 \ gL^{-1}$$

- **15.** (b) $Mn + 2HNO_3(dil.) \to Mn(NO_3)_2 + H_2$
- **16.** (c) Hydrogen behaves as a metal at very high pressure.
- 17. (d) H_2O absorbs neutrons more than D_2O and this decreases the number of neutrons for the fission process.
- **18.** (c) The para form of H_2 has lesser energy than the ortho form.
- 19. (c) Fire due to action of water on saline hydrides cannot be extinguished with water or CO_2 . These hydrides can reduce CO_2 at high temperature to produce O_2 .
- **21.** (c) $Mg(OH)_2$ is less soluble than $MgCO_3$. On boiling temporary hard water containing Mg^{+2} ions, the ppt. obtained is of $Mg(OH)_2$ are not that of $MgCO_3$.
- 22. (c) $Ca(OH)_2$ removes the permanent hardness due to Mg^{2+} ion, but it produces Ca^{2+} ions which are removed by Na_2CO_3 .


 $Mg^{2+} + Ca(OH)_2 \rightarrow Mg(OH)_2 \downarrow + Ca^{2+}$

 $Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 \downarrow +2Na^+$

 $Ca(OH)_2$ or Na_2CO_3 alone cannot remove the permanent hardness.

25. (b)
$$2HCOONa(s) \xrightarrow{\Delta} H_2(g) \uparrow + \bigcup_{\substack{i \\ COONa}} H_2(g) f(x) \xrightarrow{COONa} H_2(g)$$

Get More Learning Materials Here :

- **26.** (b) Presence of CO_3^{2-} and SO_4^{2-} ions in water reduced the tendency of dissolution of *Pb* in water as $Pb(OH)_2$.
- **27.** (b) *NaCl* does not make water hard.
- 28. (b) Solubility of CaSO₄ in water decreases with increase in temperature.
- **29.** (b) Organic ion exchange resins can remove only ionic impurities.
- **30.** (d) Water obtained from organic ion-exchange resins is free from all ionic impurities.
- 31. (a) Soap can remove all types of hardness of water as it converts the hardness producing cations into insoluble ppt.
- **32.** (b) 10 volume solution of H_2O_2 is 3.035% solution

i.e., 3.035 *g* of H_2O_2 is present in 100*ml* of the solution.

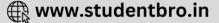
Assertion & Reason

2. (d) Both assertion (A) and reason (R) are not true.

Correct Assertion : Calgon mask the properties of Ca^{2+} and Mg^{2+} ions present in water without removing them as ppt.

Correct Reason : Calgon forms soluble complexes with Ca^{2+} and Mg^{2+} in which properties of these ions are masked.

3. (a) Both assertion (A) and reason (R) are true and R is the correct explanation of A.


Correct Reason : H_2O_2 is a strong reducing agent.

- **4.** (c) Assertion (*A*) is correct but reason (*R*) is not the correct explanation of *A*.
- 10. (d) Both assertion (A) and reason (R) are not true.

Correct Assertion : Hydrogen peroxide forms two series of salts called hydroperoxides and peroxides.

Correct Reason : Hydrogen peroxide molecule has two replaceable hydrogen atoms.

